インデックス付き
  • 学術雑誌データベース
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • ジャーナル目次
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • シマゴ
  • ウルリッヒの定期刊行物ディレクトリ
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ミアル
  • 大学補助金委員会
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • Google スカラー
このページをシェアする
ジャーナルチラシ
Flyer image

概要

Innovative Use of Medical Infrared Thermography to Evaluate Adhesive Properties of Two Buprenorphine Transdermal Patch Formulations in a Single Dose Adhesion Performance Study

Duna SN, Ghita A, Grasser S and Rizea- Savu S

An innovative approach for the assessment of transdermal patches adherence to the skin was developed and applied post-hoc to supportive imaging data collected in an open label, two-period, two-sequence, two-way crossover, controlled, randomized, single dose study to assess adhesion performance of two buprenorphine formulations (generic versus originator), applied topically to healthy male and female volunteers. The technology used for data acquisition is called Medical Infrared Thermography (MIT), a non-invasive, non-radiating imaging technique for surface temperature mapping. The use of this technology in an adhesion performance study was based on the rationale that the surface of a transdermal patch reaches a temperature in equilibrium with that of the body area where it is applied and whenever a discontinuity between skin and patch exists, the transmission of thermic energy to the surface of the transdermal patch changes. In case air is interposed, the transmission is minimal so any cases of patch lift-off from skin become visible on thermograms. The thermograms were acquired in standardized conditions but were initially intended only as supportive imaging technique, while the primary adhesion performance data was acquired through the standard approach of visual examination coupled with manual markings. In this article we further demonstrate the value of the acquired thermograms as main adhesion assessment tools, used in conjuncture with an in-house validated image processing software for the actual quantification of percentages of detachment. This novel approach for automated and unbiased analysis of adhesion performance was shown to be highly reliable and reproducible, attributes that recommend it for future use as primary adhesion assessment tool pending completion of full method validation.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません