インデックス付き
  • 環境研究へのオンライン アクセス (OARE)
  • Jゲートを開く
  • Genamics JournalSeek
  • ジャーナル目次
  • シマゴ
  • ウルリッヒの定期刊行物ディレクトリ
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • 電子ジャーナルライブラリ
  • 国際農業生物科学センター (CABI)
  • レフシーク
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • 学者の舵取り
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ミアル
  • 大学補助金委員会
  • ユーロパブ
  • Google スカラー
このページをシェアする
ジャーナルチラシ
Flyer image

概要

Use of Tuna-Cooking Liquid Effluent as a Dietary Protein and Lipid Source Replacing Fishmeal in Formulated Diets for Growing Hatchery-Reared Juvenile Spotted Babylon (Babylonia areolata)

Sirusa Kritsanapuntu*,Nilnaj Chaitanawisuti

This study presented the first research conducted on the use of tuna by-product from the tuna canning industry for growing hatchery-reared juvenile spotted babylon (Babylonia areolata) to marketable sizes. A feeding trial was conducted to evaluate the effects of five levels of partial to complete replacement of fishmeal by tuna-cooking liquid effluent on growth performance and body composition of snails reared under a flow-through culture system over 150 days. Five experimental diets were formulated to contain 0%, 25%, 50%, 75%, and 100% of tuna-cooking liquid effluent (diets TCLE0, TCLE25, TCLE50, TCLE75, and TCLE100, respectively). Results showed that significant differences (P<0.05) in specific growth rate, feed conversion ratio, and protein efficiency ratio were observed among the snails fed diets containing 0, 25, 50, 75, and 100% replacement of fishmeal by tuna-cooking liquid effluent meal. The best specific growth rate, feeding conversion ratio, and protein efficiency ratio were found in the group of snails fed a diet of TCLE100, while the lowest specific growth rate, feeding conversion ratio and protein efficiency ratios were found in snails fed diets of TCLE0 and TCLE25. No significant differences (P>0.05) in final survival rate was found among snails fed all experimental diets. Survival rates ranged from 94.2%-94.6%. Moreover, the snails fed diets of 100% replacement of fishmeal by tuna-cooking liquid effluent meal (TCLE100) showed the highest protein content, lowest lipid content, and lowest cholesterol content compared with snails fed all the other diets. The whole body composition of snails fed TCLE50 was significantly higher (P<0.05) in saturated fatty acid, monounsaturated fatty acid, polyunsaturated fatty acid, unsaturated fatty acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachinodic acid (ARA), n-6 PUFA, and n-3 PUFA contents than the groups of snails fed all the other diets The results of this study indicated that tuna-cooking liquid effluent meal can completely replace fishmeal protein with positive effects on snail growth performance and whole body composition.