インデックス付き
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • ジャーナル目次
  • グローバル インパクト ファクター (GIF)
  • 中国国家知識基盤 (CNKI)
  • ウルリッヒの定期刊行物ディレクトリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • Google スカラー
このページをシェアする
ジャーナルチラシ
Flyer image

概要

Thermo-Analytical Techniques on MX-80 Montmorillonite: A Way to Know the Behavior of Water and its Thermodynamic Properties during Hydration Dehydration Processes

Vieillard P, Tajeddine L, Gailhanou H, Blanc P, Lassin A and Gaboreau S

Thermoanalytical techniques, including differential thermal analysis (DTA) and thermogravimetric analysis (TGA), are considered as a way to determine the temperature history of concrete after fire exposure. TGA is essentially a means of observing the weight evolution of a sample as a function of temperature (dynamic heating) or time (isothermal heating). In its simplest form, the instrument used consists of a sensitive balance and a furnace arranged such that the sample holder sits inside the furnace. The system includes a thermocouple to monitor the sample temperature and a heating controller to maintain a constant temperature or change the temperature in a pre-determined fashion. DTA compares the temperature of a sample with that of a suitable reference material while both materials are heated at the same rate. Any difference in temperature between the two materials is detected by thermocouples whose signal is proportional to ∆T. To maintain the sample and reference material under similar conditions, both materials are embedded in a block of material with a large thermal mass. In theory, the temperature change in the sample should be proportional to the enthalpy change.