インデックス付き
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • ジャーナル目次
  • サイテファクター
  • ウルリッヒの定期刊行物ディレクトリ
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • 電子ジャーナルライブラリ
  • 国際農業生物科学センター (CABI)
  • レフシーク
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • 学者の舵取り
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • Google スカラー
このページをシェアする
ジャーナルチラシ
Flyer image

概要

Studies on the Suitability of Soil Solirazation as a Physical Control Mechanism to Manage Phytonematode Population in the Soil and its Effect on Plant Growth

Zafar Sultan*, Aminu Imam, Abdulmumin A. Nuhu, Minjibir A, Muhammad SI

Plant Growth-Promoting Rhizobacteria (PGPR) are able to promote plant growth and/or induce local and systemic resistance against biotic and abiotic stresses, but the stability and durability of their efficiency still need more investigation. The present work aims to identify a compatible-PGPR-mixture effective to stimulate wheat growth, resistance against Mycosphaerella graminicola, the causal agent of Septoria tritici leaf Blotch (STB), and tolerance to drought stress.

The interactions between twenty-six PGPR and four wheat cultivars with different resistance levels to STB, in individual and co-inoculations, were tested. The results demonstrated higher external and internal root colonisation potential of Paenibacillus sp. strain B2 (PB2) in a mixture, referred hereafter as Mix-3, with strains Arthrobacter sp. SSM-004 and Microbacterium sp. SSM-001, and without an impact of wheat genotype and growth stage, as observed in its individual inoculations. Only with Mix-3 was wheat growth promotion observed. Interestingly, PB2 and Mix-3 eliminated the negative impact of drought stress on the Foliar Dry Biomass (FDB) and Root Dry Biomass (RDB).

Only in a mixture of three-compatible-PGPR (Mix-3) was plant growth promotion observed and the tolerance induced to drought stress was more effective. However, it seems that resistance induced against STB is PB2-dependent.