Anine Crous and Heidi Abrahamse
Small populations of pancreatic cancer cells from Patient Derived Xenografts (PDXs) were demonstrated to be highly tumorigenic and chemotherapy resistant. The cancer cells isolated from the xenograft tumor tissue were sorted by the previously reported "Cancer Stem Cell" (CSC) markers and tested their tumorigenic activity in the limiting dilution assay by inoculating into the immuno-deficient NOD/scid mice subcutaneously. The varied correlation between the CSC marker expression and the tumorigenic activity in the NOD/scid mice among the different PDXs indicates that the CSC markers of the individual pancreatic tumor patients could be different each other. Only a part of PDX tumor samples among the six examined could show a tight correlation between the tumor initiating activity and the selectively higher expression of cell surface markers CD24, CD44 and CD133. We also demonstrated that CD133/CD44 double positive population from the one PDX shows superior tumorigenic activity and gemcitabine treatment resistance. To illuminate the characteristically expressed genes which allow them to have tumorigenic activity and chemotherapy resistance, the CD133/CD44 double positive CSC faction was subjected to the gene expression analysis. Prominently higher expression of epiregulin (11.1-fold increase compared to the double negative population), interleukin-8 and CXCL5 (8.5- and 8.0-fold increases, respectively) were observed in the CSC fraction. These gene signatures of CSC suggest several key molecular mechanisms playing important roles in CSC biology and having possibilities as drug targets for CSC therapy.