インデックス付き
  • 学術雑誌データベース
  • Jゲートを開く
  • Genamics JournalSeek
  • ジャーナル目次
  • 研究聖書
  • ウルリッヒの定期刊行物ディレクトリ
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • 学者の舵取り
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ミアル
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • Google スカラー
このページをシェアする
ジャーナルチラシ
Flyer image

概要

Genetic Mutations in the Papuan Human Mitochondrial Genome: Studies in Gene Control Regions and Gene Coding Using REPLI-g

Yohanis Ngili, Johnson Siallagan

Comparative studies of analysis and DNA mutations in Papuan humans and its comparison with several world ethnicities, both in the coding region and the gene control region have been conducted. The objective of this research was to analyze mutation variants in all regions of the complete genome of the human mitochondria by using the G-repli technique for amplification of the mtG, the results of nucleotide sequencing were then compared on several individuals representing some ethnicities in the world. DNA samples were isolated from human tissue and then sequenced using efficient primary pairs to amplify human mtG.

Here, we report that the results of mutation analysis through the mtDNA cloning process can be concluded that variations in the length of the poly-C series in the same sample indicate the presence of mtDNA subpopulations in certain individuals, also known as heteroplasms. This phenomenon is strongly suspected to be the cause of the unreadable sequence of the D-loop HVSI region that has poly-C through the direct sequencing method. This is thought to have occurred because of several subpopulations in different Papuan humans in one sample, which caused the sequencing detector to receive two different fluorescence signals at the same position. This signal difference occurs because of the shifting of the mtDNA nucleotide base due to differences in the length of the poly-C series. This allegation has opened the opportunity for further research on the relationship between unreadable sequences of mtDNA-containing HVSI regions containing poly-C through direct sequencing with variations in the composition of different subpopulations. This concept is important in studying mtDNA mutations associated with diseases (diseaserelated mutations).

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません