インデックス付き
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • ジャーナル目次
  • 研究聖書
  • 中国国家知識基盤 (CNKI)
  • シマゴ
  • ウルリッヒの定期刊行物ディレクトリ
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ミアル
  • 科学インデックスサービス (SIS)
  • ユーロパブ
  • Google スカラー
このページをシェアする
ジャーナルチラシ
Flyer image

概要

Emergence of Data-Driven Microfluidics.

Takasaki Yumi

Microfluidic devices currently rely on researchers to select the initial operating conditions empirically, then monitor and modify parameters throughout studies to achieve and maintain stable conditions that produce repeatable data. Multiple factors can cause inconsistent experimental conditions in polydimethylsiloxane-based microfluidic devices, including fabrication flaws, clogging, bubble formation, chemical impurities, or long-term effects like temperature and pressure fluctuations, surface fouling, and substrate deformation. Because of the adsorption of hydrophobic small molecules, these differences can alter chemical synthesis by changing solution concentrations or biological analyses. In this section, we discuss new research on the application of machine intelligence in microfluidic chips in conjunction with optical microscopy. This method has been used to forecast droplet size and stability, as well as to assess droplet chemical composition and fluid characteristics, as well as to monitor and correct flow rates and droplet sizes to avoid undesirable consequences such as bubble formation. Multiple inputs are converted into low-dimensional feature representations (codes) using autoencoders, which can then be processed and decoded to reconstruct the inputs.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません