インデックス付き
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • 研究聖書
  • コスモスIF
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • 電子ジャーナルライブラリ
  • レフシーク
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • 学者の舵取り
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • Google スカラー
このページをシェアする
ジャーナルチラシ
Flyer image

概要

Calibration Estimator of Regression Coefficient Using Multi-Auxiliary Variables

Vandita Kumari, Kaustav Aditya

Regression coefficients computed using ordinary least square technique assume that the observations are independent and identically distributed. These assumptions are questionable for the data that are collected using complex survey design. The sampling design information must be incorporated in estimating the regression coefficients from survey data using the sampling weights.An efficient estimator of regression coefficient has been developed by extending the calibration method with multiauxiliary variables that are related to the study variable.The estimators of variance of the proposed calibration estimator have also developed using Taylor series linearization technique and the bootstrap method. The results based on empirical studies using both simulated as well as real datasets show that the proposed calibration estimator performs better than the existing
estimator. In addition, both proposed methods of variance estimation for the calibration estimator perform adequately.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません