インデックス付き
  • 学術雑誌データベース
  • Jゲートを開く
  • Genamics JournalSeek
  • ジャーナル目次
  • 研究聖書
  • ウルリッヒの定期刊行物ディレクトリ
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • 学者の舵取り
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ミアル
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • Google スカラー
このページをシェアする
ジャーナルチラシ
Flyer image

概要

An Extended Analysis of SARS-CoV-2 Using a Nonlinear Dynamics Chaotic Model

Lin Fang, Xinlei Wang, Zhongyuan Lai, Dongdong Zhang, Mengqu Wu, Zhirui Pan, Li Wang, Kun Tang, Dahong Qian, Zhende Huang, Xudong Wang, Haibo Chen

The two dimensional cellular automata (CA) picture is an alternative method to depict the nucleotide and amino acid sequences. Here we showed that the two dimensional CA pictures can vividly delineate the nucleotide sequences (base sequence) of the gene and the genomes of SARS-CoV-2, the pathogenic agent of the COVID-19 pandemic. If the genetic codon rules are strictly followed, the CA pictures can also depict the genetic codons and indirectly express the amino acid sequences of the proteins of SARS-CoV-2. CA pictures can reveal the overall and detailed differences between nucleotide or amino acid sequences and they are very sensitive to the sequence details, such as the cleavage recognition site of the host protease like TMPRSS2, and the receptor binding domain (RBD) of the spike protein of SARS-CoV-2, which are sensitive to even changes in only one amino acid or a nucleotide between the sequences from different strains of SARS-CoV2. We think that CA pictures can provide a mathematical basis for viral genetic and amino acid sequence messages or be applied to artificial intelligence when expressing the genetic messages of SARS-CoV2 and other viruses.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません