インデックス付き
  • 学術雑誌データベース
  • Jゲートを開く
  • Genamics JournalSeek
  • ジャーナル目次
  • 研究聖書
  • ウルリッヒの定期刊行物ディレクトリ
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • 学者の舵取り
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ミアル
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • Google スカラー
このページをシェアする
ジャーナルチラシ
Flyer image

概要

A Computational Approach for MicroRNA Identification in Plants: Combining Genome-Based Predictions with RNA-Seq Data

Jorge S Oliveira, Nuno D Mendes, Victor Carocha, Clara Graça, Jorge A Paiva and Ana T Freitas

MicroRNAs are endogenous molecules that act by silencing targeted messenger RNAs, and which have an important regulatory role in many physiological processes in both plants and animals. Here, we propose a pipeline that makes use of CRAVELA, a single-genome microRNA finding tool originally developed for microRNA discovery in animals, and an NGS data analysis algorithm that provides a novel scoring function to evaluate the expression profile of candidates, taking advantage of the expected relative abundance of RNA fragments originating from the mature sequence, compared to other portions of the microRNA precursor. This approach was tested in Eucalyptus spp. for which, despite their economic importance, no microRNAs have been documented. The outcome of our approach was a short list of candidates, including both conserved and non-conserved sequences. Experimental validation showed amplification in 6 out of 8 candidates chosen from the best-scoring non-conserved sequences.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません